Final Parallel Project

Jonathan Macoco

December 16, 2022

Problem 1

For my parallel project, I decided to find the factors of a large semi-prime number. This is the basic
idea for cryptography strength used in the encryption and decryption of keys. The challenge is to find
the original large primes used to produce the semi-prime. I am using prime density analysis and sieves
algorithm to generate a list of prime numbers. With this list, I can find any semi-prime number given,
with the only constraint being memory. This program speeds up the ability to find these two prime
numbers that make up the semi-prime, as when the semi-prime number grows larger, it can take a
long time to find the two prime factors sequentially.

The value of this solution and a real-world application would be trying to decrypt RSA keys as
they are generated based on the product of two very large prime numbers. This program would be
very useful in not just generating the keys but also decrypting the keys.

To start the program, I use Sieve’s algorithm to generate all the prime numbers up to the semi-
prime for which I am trying the prime factors. After this prime numbers list was generated, I first
attempted to find the prime factors by multiplying two numbers from the prime list and checking if
the product was equal to the semi-prime. This itself takes a very long time, so I came up with another
solution that makes the sequential version of the program slightly faster. In this solution, I iterate
through the list of prime numbers and divide the semi-prime whose factors I am trying to find by the
prime number in the list. If that number is divisible by the semi-prime, then I check if the result of
the division is a prime number. If it is, then I have found the two prime factors. So I am using prime
number searching and testing as my numerical method.

To make my program run parallel T used OpenMp as my parallel programming method.

Problem 2

To demonstrate the sequential version of the program I will be using 3 semi-prime numbers and timing
them. I timed the program using POSIX clock_gettime functions. The three numbers I will be using
are 49, 1385252357, 3537146813, and 4297863209 . Here are the results of my solution.

Semi-Prime | Time in Seconds | Prime Factor 1 | Prime Factor 2

49 0.000002 7 7
1385252357 1.159279 86627 15991
3537146813 2.809085 68207 51859
4297863209 3.400566 332987 12907

I was able to verify my results by using google to check if the numbers were prime. I then used desmos
to check if the two prime numbers product was equal to the semi-prime.

Problem 3

To demonstrate the parallel version of the code an speed up I will be using the same numbers as I did
in the sequential versions test. For the program I am still using using POSIX clock_gettime functions
to time the program. I am only time the portion that I have made parallel to get a more accurate
time.

Semi-Prime | Time in Seconds | Prime Factor 1 | Prime Factor 2

49 0.001387 7 7
1385252357 0.674432 86627 15991
3537146813 1.634642 68207 51859
4297863209 2.032810 332987 12907

As you can see based on the results I do get speed up but not for numbers that are really small as this

violates Gustafson’s law.

Problem 4

Semi-Prime | Speedup in Seconds

1385252357 0.484847
3537146813 1.174443
4297863209 1.367756

Here is the table for calculating the speed up, parallel and sequential portions.

Amdahl’s Law Parameter

How obtained

Description

Sequential portion (% of
total): %44.2932176339

p — 1 where p is equal to
0.557067823661. So the sequential
portion equals 0.557067823661 — 1 =
.442932176339

The only part of the pro-
gram that runs sequen-
tially is attaining a prime
numbers list using seives
algorithm.

Parallel portion (% of to-
tal): %55.7067823661

] 1
s(@)
(s—1)
up and s is number of threads.
So when I input my values 1
1

41 - ——————
(1.71762537008)

(4-1)

p = where su is speed

get
0.557067823661

The part of my pro-
gram that runs in paral-
lel is searching for the two
prime numbers that make
up the semi-prime.

Number of shared memory
cores used and type

I used 4 shared memory cores.

The type of parallelism
was instruction level par-
allelism as I use a for di-
rective

Final value used for S, the
scaling factor

The value I used for S was 4

I used 4 as the value for S
since there are 4 cores on
the school’s machine.

Using Amdahl’s law I was able to calculate the ideal speed up.

are the results

1

(1 —0.557067823661) +
1.71762537008. So the ideal speed up should be about 1.72x faster than the sequential version. Below

Semi-Prime | Actual Speed Up ‘ Ideal Speed Up ‘

1385252357 0.484847 0.674931227841
3537146813 1.174443 1.63544684943
4297863209 1.367756 1.97980657437

0.557067823661

Speed-Up in Seconds and Amdahl’s Law ideal speed-up in Seconds

== Speed-Upin Seconds == Amdahl's Law ideal speed-up in Seconds

2.0

Time in Seconds
5

0.5

0.0

1.5E+9 2.0E+89 2.5E+8 3.0E+8 3.5E+9 4.0E+8

Semi Primes

Comparison between ideal speed up and actual speed up

So based off the output I don’t get as much speed up as Ahmdal’s ideal speedup result. But I do get
speed up nonetheless.

Appendix

To further demonstrate the speed-up and how this program can affect large semi-primes, I wrote
another program that calls the same algorithm for different-sized semi-primes in a given list. This
allowed me to automate testing for a large set of semi-prime numbers. In doing this, I could see which
semi-prime numbers benefit most from parallelism. Using this large set of semi-prime numbers, I can
show the benefit of my parallel program for finding two prime factors of a semi-prime. The code’s
output is in CSV format, allowing me to generate graphs to show this. I made two graphs, one in
ascending order and one with five very large random semi-prime numbers. The ascending order graph
shows that with small semi-primes, there isn’t much speed up, but as the semi-primes increase, the
more effective the parallel version of the program is. I used the five very large random semi-prime
numbers to show how big the numbers can get and how much faster the parallel version of the program
is when used with large numbers. To get these times, I used POSIX clock gettime functions.

3.50E-02

3.00E-02

2.50E-02

i

Time in Secon

1.50E-02

1.00E-02

5.00E-03

0.00E+00

Paralle vs Sequential

o

!___=====_-.—":::;

(1] 500 1000 1500 2000 2500 3000 3500 4000
Semi-Primes

« Seq Time = Parallel Time

Time in Seconds

1.40E+01

1.20E+01

1.00E+01

B8.00E+00

6.00E+00

4.00E+00

2.00E+00

0.00E+00

Comparison between parallel version and sequential version for semi-primes in ascending order

Large Semi Prime b vs P llel

] 150000000 200000000 350000000 400000000 450000000 500000000
Semi Prime Numbers

—=— SeqTime —s—Parallel Time

Comparison between parallel version and sequential version for large semi-primes

